z-logo
Premium
Rice virus release from the planthopper salivary gland is independent of plant tissue recognition by the stylet
Author(s) -
Xu Chunling,
Lu Chengye,
Piao Jun,
Wang Yixiao,
Zhou Tong,
Zhou Yijun,
Li Shuo
Publication year - 2020
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.5876
Subject(s) - stylet , biology , salivary gland , virus , planthopper , insect , plant virus , botany , virology , microbiology and biotechnology , anatomy , biochemistry , hemiptera
Background The transmission of plant viruses by arthropod vectors is closely related to feeding behavior. For persistently transmitted viruses, virus release means that virus moves through the salivary gland microvillus barriers of insects into plant via the stylet. However, whether virus release is dependent on plant tissue and component recognition by the stylet is unclear. Results In this study, the small brown planthopper (SBPH) and two rice viruses transmitted by it were used as a model to explore this question. After the viruliferous insects penetrated a stretched membrane without plant tissue structure and ingested liquid food (rice sap, nutrient solution or water), both viruses were detected in the liquid food after only a 6 min inoculation access period, suggesting that the viruses were released from SBPH salivary gland independent of plant tissue and component recognition by the stylet. In subsequent electrical penetration graph (EPG) analysis, N4a‐like and N4b‐like waveforms, similar to N4a (phloem salivation before ingestion) and N4b (sieve element ingestion), were observed during SBPH penetrating the membrane, exhibiting normal feeding activity of planthopper on membrane, which further demonstrated that virus release from salivary gland was along with feeding activity, without the stylet sensing plant tissue. EPG analysis and identification of salivary proteins indicated more active feeding behavior and efficient salivation in viruliferous planthoppers. Conclusion These results suggest that the rice virus is released from insect salivary gland independent of plant tissue and component recognition by the stylet, and the simple virus release mode facilitates virus transmission by vectors. © 2020 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here