z-logo
Premium
The improved resistance against gypsy moth in Larix olgensis seedlings exposed to Cd stress association with elemental and chemical defenses
Author(s) -
Jiang Dun,
Wang Guirong,
Yan Shanchun
Publication year - 2020
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.5694
Subject(s) - lymantria dispar , seedling , chemical defense , biology , pest analysis , superoxide dismutase , defence mechanisms , botany , toxicology , horticulture , antioxidant , biochemistry , herbivore , gene
BACKGROUND Cadmium (Cd), as an environmental pollutant, can endanger various biological and chemical characteristics of plants in multiple aspects. In this study, the effects of Cd contamination or exposure for 30 and 60 days at 1, 2, 4 mg kg −1 concentrations on the resistance of Larix olgensis seedlings to the gypsy moth ( Lymantria dispar ) larvae were investigated. RESULTS Our results showed that Cd stress did not significantly affect the growth and biomass parameters of the larch seedlings, which might be attributed to the scavenging mechanism of reactive oxygen species (e.g. superoxide dismutase and peroxidase). Regarding the phytochemical defense, we found that Cd stress significantly changed the contents or activities of protease inhibitors (such as trypsin and chymotrypsin inhibitors) and secondary metabolites (tannins and phenolic acids) in L. olgensis seedling needles; however, their response trends varied with Cd exposure concentrations with a significant increase at low concentrations and a significant decrease at high concentrations. Moreover, both chemical and elemental defenses contributed to the resistance of L. olgensis seedlings to the gypsy moth larvae, and their synergistic effects (between toxic elements and organic metabolites) could provide an overall improved defense of L. olgensis seedlings even at low concentrations of single components, resulting in a detrimental effect on the growth of gypsy moth larvae. CONCLUSION These findings call for an urgent need to adjust and optimize pest control strategies in heavy metal polluted areas based on the effects of heavy metal stress on woody plant resistance to pest insects. © 2019 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here