z-logo
Premium
Quantifying pesticide deposits and spray patterns at micro‐scales on apple ( Malus domesticus ) leaves with a view to arthropod exposure
Author(s) -
Witton Joanna T,
Pickering Matthew D,
Alvarez Tania,
Reed Melissa,
Weyman Gabriel,
Hodson Mark E,
Ashauer Roman
Publication year - 2018
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.5136
Subject(s) - pesticide , orchard , pesticide residue , malus , pest analysis , integrated pest management , digital image analysis , deposition (geology) , sprayer , environmental science , residue (chemistry) , environmental chemistry , agronomy , horticulture , chemistry , biology , paleontology , biochemistry , sediment , computer science , computer vision
BACKGROUND Pesticides used in commercial crop systems can adversely affect non‐target arthropod populations. The spatial distribution of pesticide residues is rarely studied at scales relevant to these populations. Here, we combine two methods for assessing pesticide spray deposits at spatial scales relevant to non‐target arthropods found in apple orchards. Pesticide residues were determined on individual apple leaves through conventional residue analysis; water‐sensitive paper was used to investigate spatial distributions in deposits at the micro‐scale. We also evaluated how accurately a digital image analysis program estimated pesticide residues. RESULTS We found that mean pesticide spray coverage on water‐sensitive paper varied by up to 6.1% (95% CI 9.4%, 2.7%) within an apple orchard, and leaf residues varied by up to 0.95 (95% CI 0.54, 1.36) mg kg −1 within a tree. Leaf residues based on analytical chemistry were six times lower than pesticide deposition estimated through image analysis of water‐sensitive paper, although these correlated strongly. This correlation allowed estimation of actual residues by application of a correction factor. CONCLUSION Our method demonstrates accurate estimation of pesticide deposits at the individual leaf scale through digital analysis of water‐sensitive paper and is a low‐cost, rapid alternative to conventional residue analysis techniques. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here