Premium
Improved insect‐proofing: expressing double‐stranded RNA in chloroplasts
Author(s) -
Bally Julia,
Fishilevich Elane,
Bowling Andrew J,
Pence Heather E,
Narva Kenneth E,
Waterhouse Peter M
Publication year - 2018
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.4870
Subject(s) - rna interference , rna silencing , biology , gene silencing , chloroplast , rna , insect , genetically modified crops , gene , transgene , genetics , microbiology and biotechnology , botany
RNA interference (RNAi) was discovered almost 20 years ago and has been exploited worldwide to silence genes in plants and animals. A decade later, it was found that transforming plants with an RNAi construct targeting an insect gene could protect the plant against feeding by that insect. Production of double‐stranded RNA (dsRNA) in a plant to affect the viability of a herbivorous animal is termed trans‐kingdom RNAi (TK‐RNAi). Since this pioneering work, there have been many further examples of successful TK‐RNAi, but also reports of failed attempts and unrepeatable experiments. Recently, three laboratories have shown that producing dsRNA in a plant's chloroplast, rather than in its cellular cytoplasm, is a very effective way of delivering TK‐RNAi. Our review examines this potentially game‐changing approach and compares it with other transgenic insect‐proofing schemes. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.