z-logo
Premium
Laboratory and field assessment of cyantraniliprole relative to existing fly baits
Author(s) -
Murillo Amy C,
Gerry Alec C,
Gallagher Nicola T,
Peterson Nyles G,
Mullens Bradley A
Publication year - 2015
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.3847
Subject(s) - spinosad , methomyl , imidacloprid , toxicology , muscidae , biology , musca , pesticide , larva , zoology , agronomy , botany
BACKGROUND Toxic fly baits are commonly used for fly control in California animal operations. However, resistance development has been a problem. Comprehensive laboratory and field studies were conducted to test commercial baits (imidacloprid, methomyl, dinotefuran, spinosad) and one novel cyantraniliprole bait. A susceptible Musca domestica strain was compared with wild‐type M. domestica and Fannia canicularis strains in the laboratory using choice/no‐choice tests. Field visitation to baits and both short‐ and longer‐term mortality were documented. RESULTS Susceptible Musca suffered high mortality with all baits after 3 days of choice and no‐choice tests. Wild‐type Musca mortality was more variable and higher in no‐choice relative to choice tests. Fannia were most susceptible to spinosad > dinotefuran = cyantraniliprole > methomyl = imidacloprid. Field Musca were most attracted to spinosad > cyantraniliprole > dinotefuran > sugar > methomyl > imidacloprid. Delayed mortality from bait‐fed field flies (captured and held with untreated food and water for 3 days) was ranked spinosad = cyantraniliprole > dinotefuran = methomyl > imidacloprid > sugar. CONCLUSION Behavioral resistance of M. domestica to imidacloprid and methomyl persists. Spinosad and cyantraniliprole baits (delayed mortality) performed best. Speed of action may be a factor in use and misuse of baits. © 2014 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom