Premium
Thiamethoxam acts as a target‐site synergist of spinosad in resistant strains of Frankliniella occidentalis
Author(s) -
Guillén Juan,
Bielza Pablo
Publication year - 2013
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.3372
Subject(s) - spinosad , thiamethoxam , clothianidin , imidacloprid , thiacloprid , acetamiprid , neonicotinoid , thrips , toxicology , biology , western flower thrips , pesticide , botany , thripidae , agronomy
BACKGROUND: Previous studies have suggested that the resistance mechanism towards spinosad in Frankliniella occidentalis (Pergande) is an altered target site. Like the neonicotinoids, the spinosyns act on nicotinic acetylcholine receptors (nAChRs) in insects, but at a distinct site. The changes in nAChRs related to spinosad resistance in thrips might involve interaction with neonicotinoids. In this study, the efficacy of spinosad and neonicotinoids, alone and in combination, was evaluated in susceptible and spinosad‐resistant thrips strains. RESULTS: The neonicotinoids tested were imidacloprid, thiacloprid, acetamiprid, thiamethoxam and clothianidin. No cross‐resistance was shown between spinosad and any of the neonicotinoids. However, an increased toxicity was observed when a mixture of spinosad with thiamethoxam or clothianidin was tested. No synergism was found in the susceptible strains. The more spinosad‐resistant the thrips strain, the stronger was the synergism. CONCLUSION: Data suggest that spinosad and thiamethoxam may interact at the nAChRs in spinosad‐resistant thrips, facilitating enhanced insecticidal action. Copyright © 2012 Society of Chemical Industry