Premium
Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables
Author(s) -
Brusselman Eva,
Beck Bert,
Pollet Sabien,
Temmerman Femke,
Spanoghe Pieter,
Moens Maurice,
Nuyttens David
Publication year - 2012
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.2290
Subject(s) - nozzle , entomopathogenic nematode , deposition (geology) , horticulture , nematode , spray nozzle , biology , agronomy , botany , biological pest control , ecology , engineering , mechanical engineering , paleontology , sediment
BACKGROUND: The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five‐nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. RESULTS: Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. CONCLUSION: Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult‐to‐reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry