Premium
Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis
Author(s) -
Blum Mathias,
Waldner Maya,
Olaya Gilberto,
Cohen Yigal,
Gisi Ulrich,
Sierotzki Helge
Publication year - 2011
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.2238
Subject(s) - pseudoperonospora cubensis , downy mildew , fungicide , biology , horticulture , botany , microbiology and biotechnology
BACKGROUND: Pseudoperonospora cubensis, the causal oomycete agent of cucurbit downy mildew, is responsible for enormous crop losses in many species of Cucurbitaceae , particularly in cucumber and melon. Disease control is mainly achieved by combinations of host resistance and fungicide applications. However, since 2004, resistance to downy mildew in cucumber has been overcome by the pathogen, thus driving farmers to rely only on fungicide spray applications, including carboxylic acid amide (CAA) fungicides. Recently, CAA‐resistant isolates of P. cubensis were recovered, but the underlying mechanism of resistance was not revealed. The purpose of the present study was to identify the molecular mechanism controlling resistance to CAAs in P. cubensis . RESULTS: The four CesA (cellulose synthase) genes responsible for cellulose biosynthesis in P. cubensis were characterised. Resistant strains showed a mutation in the CesA3 gene, at position 1105, leading to an amino acid exchange from glycine to valine or tryptophan. Cross‐resistance tests with different CAAs indicated that these mutations lead to resistance against all tested CAAs. CONCLUSION: Point mutations in the CesA3 gene of P. cubensis lead to CAA resistance. Accurate monitoring of these mutations among P. cubensis populations may improve/facilitate adequate recommendation/deployment of fungicides in the field. Copyright © 2011 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom