z-logo
Premium
Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application
Author(s) -
Liu Zhonghua,
Dai Yijun,
Huang Guodong,
Gu Yuyu,
Ni Jueping,
Wei Hua,
Yuan Sheng
Publication year - 2011
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.2174
Subject(s) - thiacloprid , acetamiprid , neonicotinoid , imidacloprid , toxicology , aphis craccivora , chemistry , agronomy , biology , pesticide , thiamethoxam , botany , aphididae , pest analysis , homoptera
BACKGROUND: The neonicotinoids imidacloprid, imidaclothiz, acetamiprid and thiacloprid consist of similar structural substituents but differ considerably with respect to soil use. Therefore, the effects of soil microbial activity on the degradation and bioefficacy persistence of the four neonicotinoids were evaluated. RESULTS: In unsterilised soils, 94.0% of acetamiprid and 98.8% of thiacloprid were degraded within 15 days, while only 22.5% of imidacloprid and 25.1% of imidaclothiz were degraded over a longer period of 25 days. In contrast, in sterilised soils, the degradation rates of acetamiprid and thiacloprid were respectively only 21.4% and 27.6%, whereas the degradation rates of imidaclothiz and imidacloprid were respectively 9.0% and almost 0% within 25 days. The degradation products of imidacloprid and imidaclothiz were identified as olefin, nitroso or guanidine metabolites, the degradation product of thiacloprid was identified as an amide metabolite and no degradation product of acetamiprid was detected. A bioefficacy assay revealed that the bioefficacy and persistence of imidacloprid, imidaclothiz, acetamiprid and thiacloprid against horsebean aphid A. craccivora were related to their degradation rate and the bioefficacy of their degradation products in soil. CONCLUSION: Soil microbial activity played a key role in the bioefficacy persistence of neonicotinoid insecticides and therefore significantly affected their technical profile after soil application. Copyright © 2011 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here