Premium
Targeting Cydia pomonella (L.) (Lepidoptera: Tortricidae) adults with low‐volume applications of insecticides alone and in combination with sex pheromone
Author(s) -
Knight Alan L
Publication year - 2010
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.1932
Subject(s) - codling moth , acetamiprid , tortricidae , toxicology , biology , mating disruption , integrated pest management , lepidoptera genitalia , horticulture , pest analysis , pesticide , botany , agronomy , imidacloprid
BACKGROUND: Studies surveyed the toxicity of several insecticides against adult codling moth, Cydia pomonella (L.), and examined the field effectiveness of applying low‐volume (12 L ha −1 ) sprays alone or in combination with a microencapsulated (MEC) sex pheromone formulation. RESULTS: Neonicotinyls, organophosphates and synthetic pyrethroids significantly reduced fecundity at concentrations nearly 100‐fold lower than their maximum labeled field rate. Field studies in 2005 demonstrated that six applications of esfenvalerate resulted in > 90% reduction in fruit injury versus the untreated check. The addition of the MEC pheromone formulation did not further improve control. Five sprays of esfenvalerate, phosmet and acetamiprid all significantly reduced levels of fruit injury compared with the untreated control in 2006. Esfenvalerate and acetamiprid mixed with the MEC pheromone significantly reduced fruit injury compared with the MEC‐only treatment. Significant increases in pest and decreases in predator mite densities occurred in plots treated with esfenvalerate in both years. Low‐volume sprays of phosmet and acetamiprid did not disrupt mites. CONCLUSION: Low‐volume insecticide sprays can effectively manage codling moth and are less disruptive of integrated mite management. Developing an effective ‘attract and kill’ technology with this approach will require optimization of the attractant(s) to maximize moth exposure to insecticide residues. Published 2010 by John Wiley & Sons, Ltd.