Premium
Auxin herbicides: current status of mechanism and mode of action
Author(s) -
Grossmann Klaus
Publication year - 2010
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.1860
Subject(s) - auxin , abscisic acid , mode of action , indole 3 acetic acid , chemistry , plant hormone , ethylene , biochemistry , biosynthesis , botany , biology , gene , catalysis
Synthetic compounds that act like phytohormonal ‘superauxins’ have been among the most successful herbicides used in agriculture for more than 60 years. These so‐called auxin herbicides are more stable in planta than the main natural auxin, indole‐3‐acetic acid (IAA), and show systemic mobility and selective action, preferentially against dicot weeds in cereal crops. They belong to different chemical classes, which include phenoxycarboxylic acids, benzoic acids, pyridinecarboxylic acids, aromatic carboxymethyl derivatives and quinolinecarboxylic acids. The recent identification of receptors for auxin perception and the discovery of a new hormone interaction in signalling between auxin, ethylene and the upregulation of abscisic acid biosynthesis account for a large part of the repertoire of auxin‐herbicide‐mediated responses, which include growth inhibition, senescence and tissue decay in sensitive dicots. An additional phenomenon is caused by the quinolinecarboxylic acid quinclorac, which also controls grass weeds. Here, the accumulation of phytotoxic levels of tissue cyanide, derived ultimately from quinclorac‐stimulated ethylene biosynthesis, plays a key role in eliciting the herbicidal symptoms in sensitive grasses. Copyright © 2009 Society of Chemical Industry