Premium
Parametric sensitivity analysis of avian pancreatic polypeptide (APP)
Author(s) -
Zhang Hong,
Wong Chung F.,
Thacher Tom,
Rabitz Herschel
Publication year - 1995
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.340230211
Subject(s) - solvation , force field (fiction) , molecular dynamics , implicit solvation , parametric statistics , sensitivity (control systems) , inertia , chemistry , chemical physics , statistical physics , physics , computational chemistry , molecule , classical mechanics , mathematics , statistics , organic chemistry , quantum mechanics , electronic engineering , engineering
Computer simulations utilizing a classical force field have been widely used to study biomolecular properties. It is important to identify the key force field parameters or structural groups controlling the molecular properties. In the present paper the sensitivity analysis method is applied to study how various partial charges and solvation parameters affect the equilibrium structure and free energy of avian pancreatic polypeptide (APP). The general shape of APP is characterized by its three principal moments of inertia. A molecular dynamics simulation of APP was carried out with the OPLS/Amber force field and a continuum model of solvation energy. The analysis pinpoints the parameters which have the largest (or smallest) impact on the protein equilibrium structure (i.e., the moments of inertia) or free energy. A display of the protein with its atoms colored according to their sensitivities illustrates the patterns of the interactions responsible for the protein stability. The results suggest that the electrostatic interactions play a more dominant role in protein stability than the part of the solvation effect modeled by the atomic solvation parameters. © 1995 Wiley‐Liss, Inc.