Premium
Multiple‐site titration and molecular modeling: Two rapid methods for computing energies and forces for ionizable groups in proteins
Author(s) -
Gilson Michael K.
Publication year - 1993
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.340150305
Subject(s) - ionization , chemistry , computation , computational chemistry , ionization energy , electrostatics , atomic physics , ion , algorithm , computer science , physics , organic chemistry
Computer models of proteins frequently treat the energies and forces associated with ionizable groups as if they were purely electrostatic. This paper examines the validity of the purely electrostatic approach, and concludes that significant errors in energies can result from the neglect of ionization changes. However, a complete treatment of ionizable groups presents substantial computational obstacles, because of the large number of ionization states which must be examined in systems having multiple interacting titratable groups. In order to address this problem, two novel methods for treating the energetics and forces associated with ionizable groups with a minimum of computer time have been developed. The most rapid method yields approximate energies by computing the free energy of a single highly occupied ionization state. The second method separates ionizable groups into clusters, and treats intracluster interactions exactly, but intercluster interactions approximately. This method yields both accurate energies and fractional charges. Good results are obtained in tests of both methods on proteins having has many as 123 ionizable groups. The more rapid method requires computer times of 0.01 to 0.34 sec, while the more accurate method requires 0.7 to 15 sec. These methods may be fast enough to permit the incorporation of ionization effects in iterative computations, such as energy minimizations and conformational searches. © 1993 Wiley‐Liss, Inc.