z-logo
Premium
Enhanced sampling of protein conformational states for dynamic cross‐docking within the protein‐protein docking server SwarmDock
Author(s) -
Torchala Mieczyslaw,
Gerguri Tereza,
Chaleil Raphael A. G.,
Gordon Patrick,
Russell Francis,
Keshani Miriam,
Bates Paul A.
Publication year - 2020
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.25851
Subject(s) - docking (animal) , searching the conformational space for docking , macromolecular docking , conformational ensembles , computer science , protein–ligand docking , protein structure , virtual screening , chemistry , biological system , molecular dynamics , computational biology , computational chemistry , biology , biochemistry , medicine , nursing
The formation of specific protein‐protein interactions is often a key to a protein's function. During complex formation, each protein component will undergo a change in the conformational state, for some these changes are relatively small and reside primarily at the sidechain level; however, others may display notable backbone adjustments. One of the classic problems in the protein‐docking field is to be able to a priori predict the extent of such conformational changes. In this work, we investigated three protocols to find the most suitable input structure conformations for cross‐docking, including a robust sampling approach in normal mode space. Counterintuitively, knowledge of the theoretically best combination of normal modes for unbound‐bound transitions does not always lead to the best results. We used a novel spatial partitioning library, Aether Engine (see Supplementary Materials), to efficiently search the conformational states of 56 receptor/ligand pairs, including a recent CAPRI target, in a systematic manner and selected diverse conformations as input to our automated docking server, SwarmDock, a server that allows moderate conformational adjustments during the docking process. In essence, here we present a dynamic cross‐docking protocol, which when benchmarked against the simpler approach of just docking the unbound components shows a 10% uplift in the quality of the top docking pose.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom