z-logo
Premium
Inspecting fluctuation and coordination around chromophore inside green fluorescent protein from water to nonpolar solvent
Author(s) -
Dai Liqiang,
Zhang Bo,
Cui Shuxun,
Yu Jin
Publication year - 2019
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.25676
Subject(s) - green fluorescent protein , chromophore , octane , solvent , fluorescence , chemistry , molecular dynamics , dihedral angle , photochemistry , molecule , chemical physics , organic chemistry , computational chemistry , hydrogen bond , biochemistry , physics , quantum mechanics , gene
Abstract Green fluorescent protein (GFP) is a widely used biomarker that demands systematical rational approaches to its structure function redesign. In this work, we mainly utilized atomistic molecular dynamics simulations to inspect and visualize internal fluctuation and coordination around chromophore inside GFP, from water to nonpolar octane solvent. We found that GFP not only maintains its β‐barrel structure well into the octane, but also sustains internal residue and water coordination to position the chromophore stably while suppress dihedral fluctuations of the chromophore, so that functional robustness of GFP is achieved. Our accompanied fluorescence microscope measurements accordingly confirmed the GFP functioning into the octane. Furthermore, we identified that crucial water sites inside GFP along with permeable pores on the β‐barrel of the protein are largely preserved from the water to the octane solvent, which allows sufficiently fast exchanges of internal water with the bulk or with the water layer kept on the surface of the protein. By additionally pulling GFP from bulk water to octane, we suggest that the GFP function can be well maintained into the nonpolar solvent as long as, first, the protein does not denature in the nonpolar solvent nor across the polar‐nonpolar solvent interface; second, a minimal set of water molecules are in accompany with the protein; third, the nonpolar solvent molecules may need to be large enough to be nonpermeable via the water pores on the β‐barrel.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here