Premium
Structural and functional characterization of type three secretion system ATPase PscN and its regulator PscL from Pseudomonas aeruginosa
Author(s) -
Halder Pranab Kumar,
Roy Chittran,
Datta Saumen
Publication year - 2019
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.25648
Subject(s) - pseudomonas aeruginosa , regulator , secretion , atpase , microbiology and biotechnology , chemistry , biology , biochemistry , bacteria , genetics , enzyme , gene
Abstract Type Three Secretion Systems (T3SS) from many gram‐negative bacteria utilize ATPases for the translocation of effector proteins into the eukaryotic host cells through injectisome. Cytosolic regulators effectively control the action of these ATPases. PscN from Pseudomonas aeruginosa was an ATPase which was regulated by an uncharacterized PscL. Here we have bioinformatically, biochemically, and biophysically characterized PscN as a T3SS ATPase and PscL as its regulator. In solution, PscN exists predominantly as oligomer and hydrolyzes ATP with V max of 3.9 ± 0.2 μmol/min/mg and K m 0.93 ± 0.06 mM. Hexameric structure of PscN was observed under AFM and TEM in the presence of ATP. PscL was dimeric in solution and interacted with PscN strongly in Ni‐NTA pull‐down assay and SPR analysis. PscL was shown to downregulate PscN ATPase activity up to 80% when mixed with PscN in 1:2 ratio (PscN:PscL). SEC data reconfirm the PscN–PscL interaction stoichiometry (ie, 1:2 ratio) which can also be visualized under AFM. In the present study, we have also found out the existence of an oligomeric form of the PscN–PscL heterotrimeric complex. PscL being the regulator of PscN and interacts to form this conformation, which may play an important role too in the regulation of T3SS utilized by Pseudomonas aeruginosa . For structural aspect, three dimensional in silico models of PscN, PscL, and PscN–PscL were generated. So, in short, present study tried to enlighten both the structural, functional and mechanistic insights into the action of PscN–PscL complex in T3SS mediated pathogenic pathway.