z-logo
Premium
S elf‐assembling study of sarcolipin and its mutants in multiple molecular dynamic simulations
Author(s) -
Cao Yipeng,
Wu Xue,
Yang Rui,
Wang Xinyu,
Sun Haiying,
Lee Imshik
Publication year - 2017
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.25273
Subject(s) - molecular dynamics , dimer , chemistry , leucine zipper , mutant , trimer , biophysics , helix (gastropod) , static electricity , isoleucine , crystallography , amino acid , biochemistry , peptide sequence , physics , biology , computational chemistry , leucine , gene , ecology , organic chemistry , quantum mechanics , snail
The Sarcolipin (SLN) is a single trans‐membrane protein that can self‐assembly to dimer and oligomer for playing importantphysiological function. In this work, we addressed the dimerization of wild type SLN (wSLN) and its mutants (mSLNs) – I17A and I20A, using both coarse‐grained (CG) and atomistic (AT) molecular dynamics (MD) simulations. Our results demonstrated that wSLN homodimer assembled as a left‐handed helical complex, while mSLNs heterodimers assembled as right‐handed complexes. Analysis of residue‐residue contacts map indicated that isoleucine (Ile)‐leucione (Leu) zipper domain played an important role in dimerization. The potential of mean force (PMF) demonstrated that wSLN homodimer was more stable than mSLNs heterodimers. Meanwhile, the mSLNs heterodimers preferred right‐handed rather than left‐handed helix. AT‐MD simulations for wSLN and mSLNs were also in line with CG‐MD simulations. These results provided the insights for understanding the mechanisms of SLNs self‐assembling. Proteins 2017; 85:1065–1077. © 2017 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here