z-logo
Premium
Aligning, analyzing, and visualizing sequences for antibody engineering: Automated recognition of immunoglobulin variable region features
Author(s) -
Jarasch Alexander,
Skerra Arne
Publication year - 2017
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.25193
Subject(s) - computer science , uniprot , numbering , complementarity (molecular biology) , software , set (abstract data type) , annotation , sequence (biology) , computational biology , identification (biology) , matching (statistics) , sequence alignment , data mining , algorithm , artificial intelligence , peptide sequence , programming language , biology , genetics , mathematics , gene , statistics , botany
The analysis and comparison of large numbers of immunoglobulin (Ig) sequences that arise during an antibody selection campaign can be time‐consuming and tedious. Typically, the identification and annotation of framework as well as complementarity‐determining regions (CDRs) is based on multiple sequence alignments using standardized numbering schemes, which allow identification of equivalent residues among different family members but often necessitate expert knowledge and manual intervention. Moreover, due to the enormous length variability of some CDRs the benefit of conventional Ig numbering schemes is limited and the calculation of correct sequence alignments can become challenging. Whereas, in principle, a well established set of rules permits the assignment of CDRs from the amino acid sequence alone, no currently available sequence alignment editor provides an algorithm to annotate new Ig sequences accordingly. Here we present a unique pattern matching method implemented into our recently developed ANTIC ALIgN editor that automatically identifies all hypervariable and framework regions in experimentally elucidated antibody sequences using so‐called “regular expressions.” By combination of this widely supported software syntax with the unique capabilities of real‐time aligning, editing and analyzing extended sets of amino acid and/or nucleotide sequences simultaneously on a local workstation, ANTIC ALIgN provides a powerful utility for antibody engineering. Proteins 2016; 85:65–71. © 2016 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here