Premium
Age‐related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes
Author(s) -
Su ShihPing,
Song Xiaomin,
Xavier Dylan,
Aquilina J. Andrew
Publication year - 2015
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.24872
Subject(s) - crystallin , peptide , proteolysis , endogeny , chemistry , lens (geology) , biochemistry , amino acid , polyacrylamide gel electrophoresis , biology , enzyme , paleontology
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old‐age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C‐terminus with significantly higher frequency compared to other residues, suggesting that trypsin‐like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA‐crystallin peptide (αA 57‐65 ) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA 57‐65 formation escalated significantly. Using 2D gel electrophoresis/nanoLC‐ESI‐MS/MS, 12 protein complexes of 40–150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross‐linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes. Proteins 2015; 83:1878–1886. © 2015 Wiley Periodicals, Inc.