Premium
Crystal structure of the C ‐terminal 2′,5′‐phosphodiesterase domain of group a rotavirus protein VP3
Author(s) -
Brandmann Tobias,
Jinek Martin
Publication year - 2015
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.24794
Subject(s) - innate immune system , rnase p , phosphodiesterase , ribonuclease , biology , rotavirus , enzyme , immune system , virology , chemistry , virus , rna , biochemistry , gene , immunology
In response to viral infections, the mammalian innate immune system induces the production of the second messenger 2′–5′ oligoadenylate (2–5A) to activate latent ribonuclease L (RNase L) that restricts viral replication and promotes apoptosis. A subset of rotaviruses and coronaviruses encode 2′,5′‐phosphodiesterase enzymes that hydrolyze 2–5A, thereby inhibiting RNase L activation. We report the crystal structure of the 2′,5′‐phosphodiesterase domain of group A rotavirus protein VP3 at 1.39 Å resolution. The structure exhibits a 2H phosphoesterase fold and reveals conserved active site residues, providing insights into the mechanism of 2–5A degradation in viral evasion of host innate immunity. Proteins 2015; 83:997–1002. © 2015 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom