Premium
Solvated protein–protein docking using Kyte‐Doolittle‐based water preferences
Author(s) -
Kastritis Panagiotis L.,
Visscher Koen M.,
van Dijk Aalt D. J.,
Bonvin Alexandre M. J. J.
Publication year - 2013
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.24210
Subject(s) - docking (animal) , chemistry , monte carlo method , searching the conformational space for docking , molecule , water model , molecular dynamics , computational chemistry , biological system , protein structure , biochemistry , mathematics , organic chemistry , medicine , statistics , nursing , biology
HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on water‐mediated contact probabilities. The latter were derived from an analysis of water contact frequencies from high‐resolution crystal structures. Here, we introduce a simple water‐mediated amino acid–amino acid contact probability scale derived from the Kyte‐Doolittle hydrophobicity scale and assess its performance on the largest high‐resolution dataset developed to date for solvated docking. Both scales yield high‐quality docking results. The novel and simple hydrophobicity scale, which should reflect better the physicochemical principles underlying contact propensities, leads to a performance improvement of around 10% in ranking, cluster quality and water recovery at the interface compared with the statistics‐based original solvated docking protocol. Proteins 2013. © 2012 Wiley Periodicals, Inc.