z-logo
Premium
CAD‐score: A new contact area difference‐based function for evaluation of protein structural models
Author(s) -
Olechnovič Kliment,
Kulberkytė Eleonora,
Venclovas Česlovas
Publication year - 2013
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.24172
Subject(s) - cad , benchmarking , computer science , score , robustness (evolution) , data mining , protein structure prediction , domain (mathematical analysis) , artificial intelligence , machine learning , mathematics , protein structure , engineering , engineering drawing , biology , mathematical analysis , biochemistry , marketing , business , gene
Evaluation of protein models against the native structure is essential for the development and benchmarking of protein structure prediction methods. Although a number of evaluation scores have been proposed to date, many aspects of model assessment still lack desired robustness. In this study we present CAD-score, a new evaluation function quantifying differences between physical contacts in a model and the reference structure. The new score uses the concept of residue-residue contact area difference (CAD) introduced by Abagyan and Totrov (J Mol Biol 1997; 268:678-685). Contact areas, the underlying basis of the score, are derived using the Voronoi tessellation of protein structure. The newly introduced CAD-score is a continuous function, confined within fixed limits, free of any arbitrary thresholds or parameters. The built-in logic for treatment of missing residues allows consistent ranking of models of any degree of completeness. We tested CAD-score on a large set of diverse models and compared it to GDT-TS, a widely accepted measure of model accuracy. Similarly to GDT-TS, CAD-score showed a robust performance on single-domain proteins, but displayed a stronger preference for physically more realistic models. Unlike GDT-TS, the new score revealed a balanced assessment of domain rearrangement, removing the necessity for different treatment of single-domain, multi-domain, and multi-subunit structures. Moreover, CAD-score makes it possible to assess the accuracy of inter-domain or inter-subunit interfaces directly. In addition, the approach offers an alternative to the superposition-based model clustering. The CAD-score implementation is available both as a web server and a standalone software package at http://www.ibt.lt/bioinformatics/cad-score/.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here