Premium
Crystal structure of a supercharged variant of the human enteropeptidase light chain
Author(s) -
Simeonov Peter,
Zahn Michael,
Sträter Norbert,
Zuchner Thole
Publication year - 2012
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.24084
Subject(s) - serine protease , serine , solubility , protein crystallization , crystallization , proteases , protease , enzyme , chemistry , biochemistry , hydrolase , organic chemistry
The highly specific serine protease human enteropeptidase light chain cleaves the Asp4Lys recognition sequence and represents an interesting enzyme for biotechnological applications. The human enzyme shows 10 times faster kinetics compared to other animal sources but low solubility under low salt conditions, which hampers protein production and crystallization. Therefore, a supercharged variant (N6D/G21D/G22D/N142D/K210E/C112S) with increased solubility was used for crystallization. The structure (resolution, 1.9 Å) displays a typical α/β trypsin‐like serine protease‐fold. The mutations introduced for protein supercharging generate larger clusters of negative potential on both sites of the active cleft but do not affect the structural integrity of the protein. Proteins 2012. © 2012 Wiley Periodicals, Inc.