Premium
Signaling pathway of a photoactivable Rac1‐GTPase in the early stages
Author(s) -
Peter Emanuel,
Dick Bernhard,
Baeurle Stephan A.
Publication year - 2012
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.24031
Subject(s) - gtpase , rac1 , effector , microbiology and biotechnology , small gtpase , chemistry , gtpase activating protein , biophysics , biology , biochemistry , signal transduction , g protein
Abstract In modern life‐ and medical‐sciences major efforts are currently concentrated on creating artificial photoenzymes, consisting of light‐ oxygen‐voltage‐sensitive (LOV) domains fused to a target enzyme. Such protein constructs possess great potential for controlling the cell metabolism as well as gene function upon light stimulus. This has recently been impressively demonstrated by designing a novel artificial fusion protein, connecting the AsLOV2‐Jα‐photosensor from Avena sativa with the Rac1‐GTPase (AsLOV2‐Jα‐Rac1), and by using it, to control the motility of cancer cells from the HeLa‐line. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their signaling pathway after photoexcitation is still in its infancy. Here, we show through computer simulations of the AsLOV2‐Jα‐Rac1‐photoenzyme that the early processes after formation of the Cys450‐FMN‐adduct involve the breakage of a H‐bond between the carbonyl oxygen FMN‐C4O and the amino group of Gln513, followed by a rotational reorientation of its sidechain. This initial event is followed by successive events including β‐sheet tightening and transmission of torsional stress along the Iβ‐sheet, which leads to the disruption of the Jα‐helix from the N‐terminal end. Finally, this process triggers the detachment of the AsLOV2‐Jα‐photosensor from the Rac1‐GTPase, ultimately enabling the activation of Rac1 via binding of the effector protein PAK1. Proteins 2012; © 2012 Wiley Periodicals, Inc.