z-logo
Premium
Predicting extreme p K a shifts in staphylococcal nuclease mutants with constant pH molecular dynamics
Author(s) -
Arthur Evan J.,
Yesselman Joseph D.,
Brooks Charles L.
Publication year - 2011
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.23195
Subject(s) - nuclease , chemistry , molecular dynamics , mutant , crystallography , computational chemistry , dna , biochemistry , gene
Accurate computational methods of determining protein and nucleic acid p K a values are vital to understanding pH‐dependent processes in biological systems. In this article, we use the recently developed method constant pH molecular dynamics (CPHMD) to explore the calculation of highly perturbed p K a values in variants of staphylococcal nuclease (SNase). Simulations were performed using the replica exchange (REX) protocol for improved conformational sampling with eight temperature windows, and yielded converged proton populations in a total sampling time of 4 ns. Our REX‐CPHMD simulations resulted in calculated p K a values with an average unsigned error (AUE) of 0.75 pK units for the acidic residues in Δ + PHS, a hyperstable variant of SNase. For highly p K a ‐perturbed SNase mutants with known crystal structures, our calculations yielded an AUE of 1.5 pK units and for those mutants based on modeled structures an AUE of 1.4 pK units was found. Although a systematic underestimate of pK shifts was observed in most of the cases for the highly perturbed pK mutants, correlations between conformational rearrangement and plasticity associated with the mutation and error in p K a prediction was not evident in the data. This study further extends the scope of electrostatic environments explored using the REX‐CPHMD methodology and suggests that it is a reliable tool for rapidly characterizing ionizable amino acids within proteins even when modeled structures are employed. Proteins 2011; © 2011 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here