Premium
Free‐energy landscape of the GB1 hairpin in all‐atom explicit solvent simulations with different force fields: Similarities and differences
Author(s) -
Best Robert B.,
Mittal Jeetain
Publication year - 2011
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22972
Subject(s) - force field (fiction) , energy landscape , molecular dynamics , chemical physics , förster resonance energy transfer , replica , chemistry , protein folding , folding (dsp implementation) , physics , computational chemistry , thermodynamics , quantum mechanics , art , biochemistry , electrical engineering , visual arts , fluorescence , engineering
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two‐state folder, the GB1 hairpin. We use extensive replica‐exchange molecular dynamics simulations to characterize the free‐energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data. Proteins 2011. © 2010 Wiley‐Liss, Inc.