Premium
Is there nascent structure in the intrinsically disordered region of troponin I?
Author(s) -
Julien Olivier,
Mercier Pascal,
Allen Claire N.,
Fisette Olivier,
Ramos Carlos H. I.,
Lagüe Patrick,
Blumenschein Tharin M. A.,
Sykes Brian D.
Publication year - 2011
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22959
Subject(s) - troponin c , troponin i , biophysics , actin , chemistry , linker , sarcomere , crystallography , biochemistry , myocyte , biology , microbiology and biotechnology , computer science , medicine , cardiology , myocardial infarction , operating system
In striated muscle, the binding of calcium to troponin C (TnC) results in the removal of the C‐terminal region of the inhibitory protein troponin I (TnI) from actin. While structural studies of the muscle system have been successful in determining the overall organization of most of the components involved in force generation at the atomic level, the structure and dynamics of the C‐terminal region of TnI remains controversial. This domain of TnI is highly flexible, and it has been proposed that this intrinsically disordered region (IDR) regulates contraction via a “fly‐casting” mechanism. Different structures have been presented for this region using different methodologies: a single α‐helix, a “mobile domain” containing a small β‐sheet, an unstructured region, and a two helix segment. To investigate whether this IDR has in fact any nascent structure, we have constructed a skeletal TnC‐TnI chimera that contains the N‐domain of TnC (1–90), a short linker (GGAGG), and the C‐terminal region of TnI (97–182) and have acquired 15 N NMR relaxation data for this chimera. We compare the experimental relaxation parameters with those calculated from molecular dynamic simulations using four models based upon the structural studies. Our experimental results suggest that the C‐terminal region of TnI does not contain any defined secondary structure, supporting the “fly‐casting” mechanism. We interpret the presence of a “plateau” in the 15 N NMR relaxation data as being an intrinsic property of IDRs. We also identified a more rigid adjacent region of TnI that has implications for muscle performance under ischemic conditions. Proteins 2011. © 2011 Wiley‐Liss, Inc.