Premium
The flexible C‐terminal arm of the Lassa arenavirus Z‐protein mediates interactions with multiple binding partners
Author(s) -
May Eric R.,
Armen Roger S.,
Mannan Aristotle M.,
Brooks Charles L.
Publication year - 2010
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22738
Subject(s) - lassa virus , arenavirus , tsg101 , biology , eif4g , population , protein structure , plasma protein binding , viral protein , chemistry , translation (biology) , genetics , microbiology and biotechnology , virus , biochemistry , lymphocytic choriomeningitis , gene , messenger rna , microrna , demography , cytotoxic t cell , microvesicles , sociology , in vitro
Abstract The arenavirus genome encodes for a Z‐protein, which contains a RING domain that coordinates two zinc ions, and has been identified as having several functional roles at various stages of the virus life cycle. Z‐protein binds to multiple host proteins and has been directly implicated in the promotion of viral budding, repression of mRNA translation, and apoptosis of infected cells. Using homology models of the Z‐protein from Lassa strain arenavirus, replica exchange molecular dynamics (MD) was used to refine the structures, which were then subsequently clustered. Population‐weighted ensembles of low‐energy cluster representatives were predicted based upon optimal agreement of the chemical shifts computed with the SPARTA program with the experimental NMR chemical shifts. A member of the refined ensemble was indentified to be a potential binder of budding factor Tsg101 based on its correspondence to the structure of the HIV‐1 Gag late domain when bound to Tsg101. Members of these ensembles were docked against the crystal structure of human eIF4E translation initiation factor. Two plausible binding modes emerged based upon their agreement with experimental observation, favorable interaction energies and stability during MD trajectories. Mutations to Z are proposed that would either inhibit both binding mechanisms or selectively inhibit only one mode. The C‐terminal domain conformation of the most populated member of the representative ensemble shielded protein‐binding recognition motifs for Tsg101 and eIF4E and represents the most populated state free in solution. We propose that C‐terminal flexibility is key for mediating the different functional states of the Z‐protein. Proteins 2010. © 2010 Wiley‐Liss, Inc.