z-logo
Premium
Titration_DB: Storage and analysis of NMR‐monitored protein pH titration curves
Author(s) -
Farrell Damien,
Miranda Emanuel Sá,
Webb Helen,
Georgi Nikolaj,
Crowley Peter B.,
McIntosh Lawrence P.,
Nielsen Jens Erik
Publication year - 2010
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22611
Subject(s) - titration , titration curve , chemistry , nmr spectra database , proton nmr , analytical chemistry (journal) , chromatography , spectral line , stereochemistry , physics , astronomy
NMR-monitored pH titration experiments are routinely used to measure site-specific protein pKa values. Accurate experimental pKa values are essential in dissecting enzyme catalysis, in studying the pH-dependence of protein stability and ligand binding, in benchmarking pKa prediction algorithms, and ultimately in understanding electrostatic effects in proteins. However, due to the complex ways in which pH-dependent electrostatic and structural changes manifest themselves in NMR spectra, reported apparent pKa values are often dependent on the way that NMR pH-titration curves are analyzed. It is therefore important to retain the raw NMR spectroscopic data to allow for documentation and possible re-interpretation. We have constructed a database of primary NMR pH-titration data, which is accessible via a web interface. Here, we report statistics of the database contents and analyze the data with a global perspective to provide guidelines on best practice for fitting NMR titration curves. Titration_DB is available at http://enzyme.ucd.ie/Titration_DB. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom