Premium
Titration_DB: Storage and analysis of NMR‐monitored protein pH titration curves
Author(s) -
Farrell Damien,
Miranda Emanuel Sá,
Webb Helen,
Georgi Nikolaj,
Crowley Peter B.,
McIntosh Lawrence P.,
Nielsen Jens Erik
Publication year - 2010
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22611
Subject(s) - titration , titration curve , chemistry , nmr spectra database , proton nmr , analytical chemistry (journal) , chromatography , spectral line , stereochemistry , physics , astronomy
NMR-monitored pH titration experiments are routinely used to measure site-specific protein pKa values. Accurate experimental pKa values are essential in dissecting enzyme catalysis, in studying the pH-dependence of protein stability and ligand binding, in benchmarking pKa prediction algorithms, and ultimately in understanding electrostatic effects in proteins. However, due to the complex ways in which pH-dependent electrostatic and structural changes manifest themselves in NMR spectra, reported apparent pKa values are often dependent on the way that NMR pH-titration curves are analyzed. It is therefore important to retain the raw NMR spectroscopic data to allow for documentation and possible re-interpretation. We have constructed a database of primary NMR pH-titration data, which is accessible via a web interface. Here, we report statistics of the database contents and analyze the data with a global perspective to provide guidelines on best practice for fitting NMR titration curves. Titration_DB is available at http://enzyme.ucd.ie/Titration_DB. Proteins 2010. (c) 2009 Wiley-Liss, Inc.