z-logo
Premium
Prediction of protein‐glucose binding sites using support vector machines
Author(s) -
Nassif Houssam,
AlAli Hassan,
Khuri Sawsan,
Keirouz Walid
Publication year - 2009
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22424
Subject(s) - support vector machine , binding site , computational biology , biochemistry , chemistry , classifier (uml) , sugar , machine learning , biology , artificial intelligence , biological system , computer science
Glucose is a simple sugar that plays an essential role in many basic metabolic and signaling pathways. Many proteins have binding sites that are highly specific to glucose. The exponential increase of genomic data has revealed the identity of many proteins that seem to be central to biological processes, but whose exact functions are unknown. Many of these proteins seem to be associated with disease processes. Being able to predict glucose‐specific binding sites in these proteins will greatly enhance our ability to annotate protein function and may significantly contribute to drug design. We hereby present the first glucose‐binding site classifier algorithm. We consider the sugar‐binding pocket as a spherical spatio‐chemical environment and represent it as a vector of geometric and chemical features. We then perform Random Forests feature selection to identify key features and analyze them using support vector machines classification. Our work shows that glucose binding sites can be modeled effectively using a limited number of basic chemical and residue features. Using a leave‐one‐out cross‐validation method, our classifier achieves a 8.11% error, a 89.66% sensitivity and a 93.33% specificity over our dataset. From a biochemical perspective, our results support the relevance of ordered water molecules and ions in determining glucose specificity. They also reveal the importance of carboxylate residues in glucose binding and the high concentration of negatively charged atoms in direct contact with the bound glucose molecule. Proteins 2009. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here