Premium
Structural basis for the complete loss of GSK3β catalytic activity due to R96 mutation investigated by molecular dynamics study
Author(s) -
Zhang Na,
Jiang Yongjun,
Zou Jianwei,
Yu Qingsen,
Zhao Wenna
Publication year - 2008
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.22279
Subject(s) - gsk 3 , serine , chemistry , glycogen synthase , allosteric regulation , alanine , mutagenesis , transferase , mutant , kinase , gsk3b , biochemistry , phosphorylation , stereochemistry , amino acid , enzyme , gene
Many Ser/Thr protein kinases, to be fully activated, are obligated to introduce a phospho‐Ser/Thr in their activation loop. Presently, the similarity of activation loop between two crystal complexes, i.e. glycogen synthase kinase 3β (GSK3β)‐AMPNP and GSK3β‐sulfate ion complex, indicates that the activation segment of GSK3β is preformed requiring neither a phosphorylation event nor conformational changes. GSK3β, when participated in glycogen synthesis and Wnt signaling pathways, possesses a unique feature with the preference of such substrate with a priming phosphate. Experimental mutagenesis proved that the residue arginine at amino acid 96 mutations to lysine (R96K) or alanine (R96A) selectively abolish activity on the substrates involved in glycogen synthesis signaling pathway. Based on two solved crystal structures, wild type (WT) and two mutants (R96K and R96A) GSK3β‐ATP‐phospho‐Serine (pSer) complexes were modeled. Molecular dynamics simulations and energy analysis were employed to investigate the effect of pSer involvement on the GSK3β structure in WT, and the mechanisms of GSK3β deactivation due to R96K and R96A mutations. The results indicate that the introduction of pSer to WT GSK3β generates a slight lobe closure on GSK3β without any remarkable changes, which may illuminate the experimental conclusion, whereas the conformations of GSK3β and ATP undergo significant changes in two mutants. As to GSK3β, the affected positions distribute over activation loop, α‐helix, and glycine‐rich loop. Based on coupling among the mentioned positions, the allosteric mechanisms for distorted ATP were proposed. Energy decomposition on the residues of activation loop identified the important residues Arg96 and Arg180 in anchoring the phosphate group. Proteins 2009. © 2008 Wiley‐Liss, Inc.