z-logo
Premium
A 1.55 Å resolution X‐ray crystal structure of HEF2/ERH and insights into its transcriptional and cell‐cycle interaction networks
Author(s) -
Jin Tengchuan,
Guo Feng,
Serebriiskii Ilya G,
Howard Andrew,
Zhang YuZhu
Publication year - 2007
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.21343
Subject(s) - antiparallel (mathematics) , dimer , transcription factor , enhancer , complementation , transcription (linguistics) , microbiology and biotechnology , chemistry , biology , gene , biochemistry , mutant , physics , organic chemistry , quantum mechanics , linguistics , philosophy , magnetic field
Functional complementation screens can identify known or novel proteins with important intracellular activities. We have isolated human enhancer of filamentation 2 (HEF2) in a screen to find human genes that promote pseudohyphal growth in budding yeast. HEF2 is identical to enhancer of rudimentary homolog (ERH), a highly conserved protein of 104 amino acids. In silico protein‐interaction mapping implies that HEF2/ERH interacts with transcription factors, cell‐cycle regulators, and other proteins shown to enhance filamentous growth in S. cerevisiae , suggesting a context for studies of HEF2/ERH function. To provide a mechanistic basis to study of HEF2/ERH, we have determined the crystal structure of HEF2/ERH at 1.55 Å. The crystal asymmetric unit contains a HEF2/ERH monomer. The two monomers of the physiological dimer are related by the y , x , – z crystal symmetric operation. The HEF2/ERH structure is characterized by a novel α + β fold, a four‐strand antiparallel β‐sheet with three α‐helixes on one side of the sheet. The β‐sheets from the two monomers together constitute a pseudo‐β‐barrel, and form the center of the functional HEF2/ERH dimer, with a cavity channel at the dimer interface. Docking of this structure to the HEF2/ERH partner protein DCOH/PCD suggests that HEF2/ERH may regulate the oligomeric state of this protein. These data suggest that HEF2/ERH may be an important transcription regulator that also functions in the control of cell‐cycle progression. Proteins 2007. © 2007 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom