z-logo
Premium
Measures for the assessment of fuzzy predictions of protein secondary structure
Author(s) -
Lee Julian
Publication year - 2006
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.21164
Subject(s) - protein secondary structure , fuzzy logic , probabilistic logic , measure (data warehouse) , data mining , fuzzy set , correlation , mathematics , computer science , flexibility (engineering) , algorithm , artificial intelligence , statistics , chemistry , biochemistry , geometry
Many of the recent secondary structure prediction methods incorporate the idea of fuzzy set theory, where instead of assigning a definite secondary structure to a query residue, probability for the residue being in each of the conformational states is estimated. Moreover, continuous assignment of conformational states to the experimentally observed protein structures can be performed in order to reflect inherent flexibility. Although various measures have been developed for evaluating performances of secondary structure prediction methods, they depend only on the most probable secondary structures. They do not assess the accuracy of the probabilities produced by fuzzy prediction methods, and they cannot incorporate information contained in continuous assignments of conformational states to observed structures. Three important measures for evaluating performance of a secondary structure prediction algorithm, Q score, Segment OVerlap (SOV) measure, and the k ‐state correlation coefficient (Corr), are deformed into fuzzy measures F score, Fuzzy OVerlap (FOV) measure, and the fuzzy correlation coefficient (Forr), so that the new measures not only assess probabilistic outputs of fuzzy prediction methods, but also incorporate information from continuous assignments of secondary structure. As an example of application, prediction results of four fuzzy secondary structure prediction methods, PSIPRED, PROFking, SABLE, and PREDICT, are assessed using the new fuzzy measures. Proteins 2006. © 2006 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here