Premium
Similarity networks of protein binding sites
Author(s) -
Zhang Ziding,
Grigorov Martin G.
Publication year - 2005
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/prot.20752
Subject(s) - structural similarity , binding site , similarity (geometry) , computational biology , protein function , structural alignment , protein function prediction , sequence (biology) , computer science , sequence alignment , data mining , biology , genetics , artificial intelligence , peptide sequence , gene , image (mathematics)
An increasing attention has been dedicated to the characterization of complex networks within the protein world. This work is reporting how we uncovered networked structures that reflected the structural similarities among protein binding sites. First, a 211 binding sites dataset has been compiled by removing the redundant proteins in the Protein Ligand Database (PLD) (http://www-mitchell.ch.cam.ac.uk/pld/). Using a clique detection algorithm we have performed all-against-all binding site comparisons among the 211 available ones. Within the set of nodes representing each binding site an edge was added whenever a pair of binding sites had a similarity higher than a threshold value. The generated similarity networks revealed that many nodes had few links and only few were highly connected, but due to the limited data available it was not possible to definitively prove a scale-free architecture. Within the same dataset, the binding site similarity networks were compared with the networks of sequence and fold similarity networks. In the protein world, indications were found that structure is better conserved than sequence, but on its own, sequence was better conserved than the subset of functional residues forming the binding site. Because a binding site is strongly linked with protein function, the identification of protein binding site similarity networks could accelerate the functional annotation of newly identified genes. In view of this we have discussed several potential applications of binding site similarity networks, such as the construction of novel binding site classification databases, as well as the implications for protein molecular design in general and computational chemogenomics in particular.