Premium
Epigenetic down regulation of RASSF10 and its possible clinical implication in prostate carcinoma
Author(s) -
Dansranjavin Temuujin,
Wagenlehner Florian,
Gattenloehner Stefan,
Steger Klaus,
Weidner Wolfgang,
Dammann Reinhard,
Schagdarsurengin Undraga
Publication year - 2012
Publication title -
the prostate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.295
H-Index - 123
eISSN - 1097-0045
pISSN - 0270-4137
DOI - 10.1002/pros.22510
Subject(s) - lncap , epigenetics , cancer research , dna methylation , demethylating agent , methylation , du145 , trichostatin a , bisulfite sequencing , prostate cancer , biology , microbiology and biotechnology , cancer , gene expression , gene , histone , genetics , histone deacetylase
BACKGROUND Ras association domain family (RASSF) comprises several tumor suppressor genes, which are often epigenetically inactivated in human tumors. Here, we aim to analyze the relevance of the recently identified member RASSF10 in prostate carcinogenesis. METHODS RASSF10 promoter methylation and mRNA expression were investigated by bisulfite‐pyrosequencing and qRT‐PCR, respectively, in prostate carcinoma (PCa) cell lines (LNCaP, 22Rv1, DU‐145) and in 83 primary PCa and 53 primary benign prostatic hyperplasia (BPH) tissues obtained after radical prostatectomy. Histological localization of RASSF10 was done by in situ hybridization. To prove the epigenetic nature of RASSF10 down regulation, PCa cell lines were treated with 5‐aza‐2‐deoxycytidine and trichostatin A. Potential function of RASSF10 was analyzed in LNCaP by colony formation and apoptosis assays. RESULTS RASSF10 mRNA was localized to cells of the basal layer of the prostatic gland. Absence (LNCaP) and decrease (22Rv1, DU‐145) of RASSF10 expression was associated with promoter methylation and could be restored by demethylating agents. A link between RASSF10 mRNA reduction and promoter methylation was also detected in primary prostate tissues ( P = 0.006), where PCa showed more frequently reduced RASSF10 levels when compared with BPH (33.7% vs. 13.2%, P = 0.009). RASSF10 methylation could be further associated with advanced tumor stage and advanced age ( P ‐values < 0.05). Our preliminary functional assays revealed the ability of RASSF10 to inhibit colony formation ( P = 0.018) and to increase apoptosis ( P = 0.035). CONCLUSIONS This is the first study, which demonstrates the frequent epigenetic inactivation of RASSF10 in PCa and its implication in clinical symptoms of PCa. Prostate 72:1550–1558, 2012. © 2012 Wiley Periodicals, Inc.