z-logo
Premium
Path Integral Solution via Matrix Algebra, for the Lagrangian
Author(s) -
Chouchaoui A.,
Chetouani L.,
Hammann T. F.
Publication year - 1993
Publication title -
fortschritte der physik/progress of physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.469
H-Index - 71
eISSN - 1521-3978
pISSN - 0015-8208
DOI - 10.1002/prop.2190410303
Subject(s) - propagator , path integral formulation , lagrangian , mathematics , matrix (chemical analysis) , path (computing) , frame work , brownian motion , frame (networking) , algebra over a field , mathematical analysis , mathematical physics , pure mathematics , physics , quantum mechanics , computer science , theoretical physics , quantum , statistics , materials science , composite material , programming language , telecommunications
The propagator for the one dimensional Lagrangianis calculated in the frame work of path integrals, via Matrix algebra, and by the polygonal paths approach. When m = 0, the propagator is reduced to the distribution function for a Brownian particle.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom