Premium
Path Integral Solution via Matrix Algebra, for the Lagrangian
Author(s) -
Chouchaoui A.,
Chetouani L.,
Hammann T. F.
Publication year - 1993
Publication title -
fortschritte der physik/progress of physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.469
H-Index - 71
eISSN - 1521-3978
pISSN - 0015-8208
DOI - 10.1002/prop.2190410303
Subject(s) - propagator , path integral formulation , lagrangian , mathematics , matrix (chemical analysis) , path (computing) , frame work , brownian motion , frame (networking) , algebra over a field , mathematical analysis , mathematical physics , pure mathematics , physics , quantum mechanics , computer science , theoretical physics , quantum , statistics , materials science , composite material , programming language , telecommunications
The propagator for the one dimensional Lagrangianis calculated in the frame work of path integrals, via Matrix algebra, and by the polygonal paths approach. When m = 0, the propagator is reduced to the distribution function for a Brownian particle.