z-logo
Premium
Tensor supermultiplets and toric quaternion‐Kähler geometry
Author(s) -
de Wit B.,
Saueressig F.
Publication year - 2007
Publication title -
fortschritte der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.469
H-Index - 71
eISSN - 1521-3978
pISSN - 0015-8208
DOI - 10.1002/prop.200610371
Subject(s) - quaternion , mathematics , abelian group , pure mathematics , tensor (intrinsic definition) , order (exchange) , mathematical analysis , geometry , finance , economics
We review the relation between 4 n ‐dimensional quaternion‐Kähler metrics with n + 1 abelian isometries and superconformal theories of n + 1 tensor supermultiplets. As an application we construct the class of eight‐dimensional quaternion‐Kähler metrics with three abelian isometries in terms of a single function obeying a set of linear second‐order partial differential equations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom