Premium
The Monodromy Rings of the Necklace Graphs
Author(s) -
Regge Tullio,
Speer Eugene R.,
Westwater Michael J.
Publication year - 1972
Publication title -
fortschritte der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.469
H-Index - 71
eISSN - 1521-3978
pISSN - 0015-8208
DOI - 10.1002/prop.19720200603
Subject(s) - necklace , multiplet , monodromy , graph , mathematics , feynman diagram , combinatorics , loop (graph theory) , discrete mathematics , pure mathematics , physics , quantum mechanics , mathematical physics , spectral line
Abstract A necklace graph is a Feynman graph obtained from a single loop graph by replacing each internal line by a multiplet (i.e. a set of one or more internal lines joining the same two vertices). In this paper the monodromy rings of the necklace graphs are determined.