z-logo
Premium
The Levinthal paradox of the interactome
Author(s) -
Tompa Peter,
Rose George D.
Publication year - 2011
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.747
Subject(s) - interactome , computational biology , yeast , component (thermodynamics) , saccharomyces cerevisiae , protein folding , biology , computer science , chemistry , biophysics , biological system , biochemistry , physics , gene , thermodynamics
The central biological question of the 21st century is: how does a viable cell emerge from the bewildering combinatorial complexity of its molecular components? Here, we estimate the combinatorics of self‐assembling the protein constituents of a yeast cell, a number so vast that the functional interactome could only have emerged by iterative hierarchic assembly of its component sub‐assemblies. A protein can undergo both reversible denaturation and hierarchic self‐assembly spontaneously, but a functioning interactome must expend energy to achieve viability. Consequently, it is implausible that a completely “denatured” cell could be reversibly renatured spontaneously, like a protein. Instead, new cells are generated by the division of pre‐existing cells, an unbroken chain of renewal tracking back through contingent conditions and evolving responses to the origin of life on the prebiotic earth. We surmise that this non‐deterministic temporal continuum could not be reconstructed de novo under present conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here