z-logo
Premium
Self‐organizing tree‐growing network for the classification of protein sequences
Author(s) -
Fraga Luis Gerardo De La,
Carazo Jose Maria,
Wang HuaiChun,
Dopazo Joaquin,
Zhu YunPing
Publication year - 1998
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.5560071215
Subject(s) - tree (set theory) , computational biology , computer science , artificial intelligence , biology , mathematics , combinatorics
The self‐organizing tree algorithm (SOTA) was recently introduced to construct phylogenetic trees from biological sequences, based on the principles of Kohonen's self‐organizing maps and on Fritzke's growing cell structures. SOTA is designed in such a way that the generation of new nodes can be stopped when the sequences assigned to a node are already above a certain similarity threshold. In this way a phylogenetic tree resolved at a high taxonomic level can be obtained. This capability is especially useful to classify sets of diversified sequences. SOTA was originally designed to analyze pre‐aligned sequences. It is now adapted to be able to analyze patterns associated to the frequency of residues along a sequence, such as protein dipeptide composition and other n‐gram compositions. In this work we show that the algorithm applied to these data is able to not only successfully construct phylogenetic trees of protein families, such as cytochrome c , triosephophate isomerase, and hemoglobin alpha chains, but also classify very diversified sequence data sets, such as a mixture of interleukins and their receptors.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here