Premium
Global analysis of the thermal and chemical denaturation of the N‐terminal domain of the ribosomal protein L9 in H 2 O and D 2 O. Determination of the thermodynamic parameters, Δ H °, Δ S °, and Δ C ° p , and evaluation of solvent isotope effects
Author(s) -
Kuhlman Brian,
Raleigh Daniel P.
Publication year - 1998
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.5560071118
Subject(s) - chemical stability , crystallography , denaturation (fissile materials) , ribosomal protein , thermal stability , chemistry , circular dichroism , gibbs free energy , thermodynamics , physics , ribosome , nuclear chemistry , rna , biochemistry , organic chemistry , gene
The stability of the N‐terminal domain of the ribosomal protein L9, NTL9, from Baccilus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H 2 O and D 2 O. The basic thermodynamic parameters for the unfolding reaction, ΔH°, ΔS°, and ΔC° p , were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs‐Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3. 78±0. 25 kcal mol −1 at 14°C. ΔH°(25°C) for protein unfolding equals 9. 9±0. 7 kcal mol −1 and TΔS° (25 °C) equals 6. 2±0. 6 kcal mol −1 . C p equals 0. 53±0. 06 kcal mol −1 deg −1 . There is a small increase in stability when D 2 O is substituted for H 2 O. Based on the results from global analysis, NTL9 is 1. 06±0. 60 kcal mol −1 more stable in D 2 O at 25 °C and T m is increased by 5. 8±3. 6°C in D 2 O. Based on the results from individual denaturation experiments, NTL9 is 0. 68±0. 68 kcal mol −1 more stable in D 2 O at 25°C and T m is increased by 3. 5±2. 1°C in D 2 O. Within experimental error there are no changes in ΔH°(25°C) when D 2 O is substituted for H 2 O.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom