Premium
Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins
Author(s) -
Gerstein Mark,
Levitt Michael
Publication year - 1998
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.5560070226
Subject(s) - structural alignment , pairwise comparison , computer science , basis (linear algebra) , orientation (vector space) , simple (philosophy) , structural classification of proteins database , structural bioinformatics , protein structure , algorithm , sequence alignment , multiple sequence alignment , data mining , artificial intelligence , pattern recognition (psychology) , mathematics , biology , geometry , peptide sequence , biochemistry , philosophy , epistemology , gene
We apply a simple method for aligning protein sequences on the basis of a 3D structure, on a large scale, to the proteins in the scop classification of fold families. This allows us to assess, understand, and improve our automatic method against an objective, manually derived standard, a type of comprehensive evaluation that has not yet been possible for other structural alignment algorithms. Our basic approach directly matches the backbones of two structures, using repeated cycles of dynamic programming and least-squares fitting to determine an alignment minimizing coordinate difference. Because of simplicity, our method can be readily modified to take into account additional features of protein structure such as the orientation of side chains or the location-dependent cost of opening a gap. Our basic method, augmented by such modifications, can find reasonable alignments for all but 1.5% of the known structural similarities in scop, i.e., all but 32 of the 2,107 superfamily pairs. We discuss the specific protein structural features that make these 32 pairs so difficult to align and show how our procedure effectively partitions the relationships in scop into different categories, depending on what aspects of protein structure are involved (e.g., depending on whether or not consideration of side-chain orientation is necessary for proper alignment). We also show how our pairwise alignment procedure can be extended to generate a multiple alignment for a group of related structures. We have compared these alignments in detail with corresponding manual ones culled from the literature. We find good agreement (to within 95% for the core regions), and detailed comparison highlights how particular protein structural features (such as certain strands) are problematical to align, giving somewhat ambiguous results. With these improvements and systematic tests, our procedure should be useful for the development of scop and the future classification of protein folds.