Premium
The crystal structure Escherichia coli Spy
Author(s) -
Kwon Eunju,
Kim Dong Young,
Gross Carol A.,
Gross John D.,
Kim Kyeong Kyu
Publication year - 2010
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.489
Subject(s) - periplasmic space , antiparallel (mathematics) , escherichia coli , dimer , spheroplast , peptide sequence , crystallography , chemistry , conserved sequence , protein secondary structure , biology , biophysics , biochemistry , physics , gene , organic chemistry , quantum mechanics , magnetic field
Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress reponse. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two‐component systems in E. coli , though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin‐like structure of four α‐helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stablizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.