Premium
Dissecting molecular details and functional effects of the high‐affinity copper binding site in plasminogen activator Inhibitor‐1
Author(s) -
Chu Yuzhuo,
Bucci Joel C.,
Peterson Cynthia B.
Publication year - 2021
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.4017
Subject(s) - isothermal titration calorimetry , serpin , plasminogen activator , chemistry , serine protease , stereochemistry , binding site , activator (genetics) , active site , plasminogen activator inhibitor 1 , biochemistry , protease , receptor , enzyme , biology , gene , endocrinology
Plasminogen activator inhibitor‐1 (PAI‐1) is the primary inhibitor for plasminogen activators, tissue‐type plasminogen activator (tPA) and urokinase‐type plasminogen activator (uPA). As a unique member in the serine protease inhibitor (serpin) family, PAI‐1 is metastable and converts to an inactive, latent structure with a half‐life of 1–2 hr under physiological conditions. Unusual effects of metals on the rate of the latency conversion are incompletely understood. Previous work has identified two residues near the N‐terminus, H2 and H3, which reside in a high‐affinity copper‐binding site in PAI‐1 [Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB (2017) J Biol Inorg Chem 22:1123–1,135]. In this study, neighboring residues, H10, E81, and H364, were tested as possible sites that participate in Cu(II) coordination at the high‐affinity site. Kinetic methods, gel sensitivity assays, and isothermal titration calorimetry (ITC) revealed that E81 and H364 have different roles in coordinating metal and mediating the stability of PAI‐1. H364 provides a third histidine in the metal‐coordination sphere with H2 and H3. In contrast, E81 does not appear to be required for metal ligation along with histidines; contacts made by the side‐chain carboxylate upon metal binding are perturbed and, in turn, influence dynamic fluctuations within the region encompassing helices D, E, and F and the W86 loop that are important in the pathway for the PAI‐1 latency conversion. This investigation underscores a prominent role of protein dynamics, noncovalent bonding networks and ligand binding in controlling the stability of the active form of PAI‐1.