z-logo
Premium
Oligomerization of a symmetric β‐trefoil protein in response to folding nucleus perturbation
Author(s) -
Tenorio Connie A.,
Parker Joseph B.,
Blaber Michael
Publication year - 2020
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.3877
Subject(s) - trefoil , protein folding , nucleus , protein engineering , protein design , protein structure , contact order , biophysics , biology , chemistry , microbiology and biotechnology , computational biology , physics , biochemistry , agronomy , enzyme
Gene duplication and fusion events in protein evolution are postulated to be responsible for the common protein folds exhibiting internal rotational symmetry. Such evolutionary processes can also potentially yield regions of repetitive primary structure. Repetitive primary structure offers the potential for alternative definitions of critical regions, such as the folding nucleus (FN). In principle, more than one instance of the FN potentially enables an alternative folding pathway in the face of a subsequent deleterious mutation. We describe the targeted mutation of the carboxyl‐terminal region of the (internally located) FN of the de novo designed purely‐symmetric β‐trefoil protein Symfoil‐4P. This mutation involves wholesale replacement of a repeating trefoil‐fold motif with a “blade” motif from a β‐propeller protein, and postulated to trap that region of the Symfoil‐4P FN in a nonproductive folding intermediate. The resulting protein (termed “Bladefoil”) is shown to be cooperatively folding, but as a trimeric oligomer. The results illustrate how symmetric protein architectures have potentially diverse folding alternatives available to them, including oligomerization, when preferred pathways are perturbed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here