Premium
Internal motion in protein crystal structures
Author(s) -
Schmidt Andrea,
Lamzin Victor S.
Publication year - 2010
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.371
Subject(s) - chemistry , protein dynamics , chemical physics , crystallography , substrate (aquarium) , protein structure , binding site , active site , rnase p , biophysics , molecular dynamics , biological system , computational chemistry , biology , enzyme , biochemistry , rna , ecology , gene
Abstract The binding states of the substrates and the environment have significant influence on protein motion. We present the analysis of such motion derived from anisotropic atomic displacement parameters (ADPs) in a set of atomic resolution protein structures. Local structural motion caused by ligand binding as well as functional loops showing cooperative patterns of motion could be inferred. The results are in line with proposed protonation states, hydrogen bonding patterns and the location of distinctly flexible regions: we could locate the mobile active site loop in a virus integrase, distinguish the subdomains in RNAse A and hydroxynitrile lyase, and reconstruct the molecular architecture in a xylanase. We demonstrate that the ADP‐based motion analysis provides information at high level of detail and that the structural changes needed for substrate attachment or release may be derived from single X‐ray structures.