z-logo
Premium
Gain of function conferred by selenocysteine: catalytic enhancement of one‐electron transfer reactions by thioredoxin reductase
Author(s) -
Barber Drew R.,
Hondal Robert J.
Publication year - 2019
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.3480
Subject(s) - selenocysteine , thioredoxin reductase , thioredoxin , ferredoxin thioredoxin reductase , chemistry , biochemistry , reductase , flavin group , cysteine , cytochrome c , glutaredoxin , electron transfer , enzyme , cofactor , amino acid , mitochondrion , photochemistry
Selenocysteine (Sec) is the 21st amino acid in the genetic code and it is present in a small number of proteins where it replaces the much more commonly used amino acid cysteine (Cys). It is both more complicated and bioenergetically costly to insert Sec into a protein in comparison to Cys, and this cost is most likely compensated by a gain of function to the enzyme/protein in which it is incorporated. Here we investigate one such gain of function, the enhancement of one‐electron transfer catalysis. We compared the ability of Sec‐containing mouse mitochondrial thioredoxin reductase (mTrxR2) to catalyze the reduction of bovine cytochrome c , ascorbyl radical, and dehydroascorbate in comparison to Cys‐containing thioredoxin reductases from D. melanogaster (DmTrxR) and P. falciparum (PfTrxR). The Sec‐containing mTrxR2 was able to reduce all three substrates, while the Cys‐containing enzymes had little or no activity. In addition, we constructed Cys➔Sec mutants of DmTrxR and PfTrxR and found that this substitution resulted in a gain of function, as these mutant enzymes were now able to catalyze the reduction of these substrates. We also found that in the case of PfTrxR, reduction of cytochrome c was enhanced five‐fold in a truncated PfTrxR in which the C‐terminal redox center was removed. This shows that some of the ability of thioredoxin reductase to reduce this substrate comes from the flavin coenzyme. We also discuss a possible mechanism by which Sec‐containing thioredoxin reductase reduces dehydroascorbate to ascorbate by two sequential, one‐electron reductions, in part catalyzed by Sec.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here