Premium
Functional and evolutionary analysis of viral proteins containing a Rossmann‐like fold
Author(s) -
Medvedev Kirill E.,
Kinch Lisa N.,
Grishin Nick V.
Publication year - 2018
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.3438
Subject(s) - obligate , biology , three domain system , computational biology , protein data bank , protein domain , protein structure , viral protein , obligate parasite , genetics , biochemistry , archaea , bacteria , virus , host (biology) , gene , ecology
Abstract Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. Rossmann‐like fold is the most populated fold among α/β‐folds in the Protein Data Bank and proteins containing Rossmann‐like fold constitute 22% of all known proteins 3D structures. Thus, analysis of viral proteins containing Rossmann‐like domains could provide an understanding of viral biology and evolution as well as could propose possible targets for antiviral therapy. We provide functional and evolutionary analysis of viral proteins containing a Rossmann‐like fold found in the evolutionary classification of protein domains (ECOD) database developed in our lab. We identified 81 protein families of bacterial, archeal, and eukaryotic viruses in light of their evolution‐based ECOD classification and Pfam taxonomy. We defined their functional significance using enzymatic EC number assignments as well as domain‐level family annotations.