Premium
From chaperonins to Rubisco assembly and metabolic repair
Author(s) -
HayerHartl Manajit
Publication year - 2017
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.3309
Subject(s) - rubisco , sugar phosphates , chaperonin , biochemistry , carbon fixation , photosynthesis , biogenesis , pyruvate carboxylase , biology , oxygenase , protein subunit , chemistry , protein folding , enzyme , gene
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO 2 in photosynthesis by catalyzing the carboxylation of the 5‐carbon sugar ribulose‐1,5‐bisphosphate (RuBP). Despite its pivotal role, Rubisco is an inefficient enzyme and thus has been a key target for bioengineering. However, efforts to increase crop yields by Rubisco engineering remain unsuccessful, due in part to the complex machinery of molecular chaperones required for Rubisco biogenesis and metabolic repair. While the large subunit of Rubisco generally requires the chaperonin system for folding, the evolution of the hexadecameric Rubisco from its dimeric precursor resulted in the dependence on an array of additional factors required for assembly. Moreover, Rubisco function can be inhibited by a range of sugar‐phosphate ligands. Metabolic repair of Rubisco depends on remodeling by the ATP‐dependent Rubisco activase and hydrolysis of inhibitors by specific phosphatases. This review highlights our work toward understanding the structure and mechanism of these auxiliary machineries.