z-logo
Premium
Structure‐function relationships of brazzein variants with altered interactions with the human sweet taste receptor
Author(s) -
Singarapu Kiran K.,
Tonelli Marco,
Markley John L.,
AssadiPorter Fariba M.
Publication year - 2016
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1002/pro.2870
Subject(s) - chemistry , sweetness , protein structure , biochemistry , stereochemistry , taste
Brazzein (Brz) is a small (54 amino acid residue) sweet tasting protein with physical and taste properties superior to other non‐carbohydrate sweeteners. In an investigation of sequence‐dependent functional properties of the protein, we used NMR spectroscopy to determine the three‐dimensional structures and dynamic properties of two Brz variants: one with a single‐site substitution (D40K), which is three‐fold sweeter than wild‐type Brz, and one with a two‐residue insertion between residues 18 and 19 (ins 18 RI 19 ), which is devoid of sweetness. Although the three‐dimensional folds of the two variants were very similar to wild‐type Brz, they exhibited local conformational and dynamic differences. The D40K substitution abolished the strong inter‐stand H‐bond between the side chains of residues Gln46 and Asp40 present in wild‐type Brz and increased the flexibility of the protein especially at the mutation site. This increased flexibility presumably allows this site to interact more strongly with the G‐protein coupled human sweet receptor. On the other hand, the Arg‐Ile insertion within Loop9–19 leads to distortion of this loop and stiffening of the adjacent site whose flexibility appears to be required for productive interaction with the sweet receptor.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here